If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2-8p-23=0
a = 4; b = -8; c = -23;
Δ = b2-4ac
Δ = -82-4·4·(-23)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12\sqrt{3}}{2*4}=\frac{8-12\sqrt{3}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12\sqrt{3}}{2*4}=\frac{8+12\sqrt{3}}{8} $
| 2t-4-2t=6t-4 | | 3-2z=-11 | | 10(1/2x)(4)=-41 | | 8+9+7x=2x | | 11x+3=3x+36 | | 15/2x-1=7/x | | 3/4=x+1/x+12 | | X+(x•3)=9-2(x) | | 4/5+3(a)=1/5-(4a) | | 17=((5w+8)/3)+((8w+2)/7) | | -20+3x=7 | | 2(x+1)=7x+11 | | 8/15-2/5=a | | 15x14=225 | | -4(7x-9)+3=-28x+39 | | 2v+22=9(v+4) | | -2(w+4)=-6w-32 | | 19-1/6(30q+6)=-6q-13 | | -18+6x=30 | | -9x+21=8(x+9) | | 17-1/5(40w+5)=-9w-7 | | x+(x*0.1)=47 | | x+(x*0.2)=47 | | x+(x*0.1)=42 | | 6x-7=125 | | 9n^2-15n=0 | | x+(x*0.2)=42 | | (5c-3)(6c+5)=0 | | -3x-8=7x5 | | 48x+75=6x-7. | | 3h=2h/5+26/5 | | 96=-6z |